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Abstract

Synthesis is a major challenge in the discovery of new inorganic materials. There is

currently limited theoretical rationale for planning optimal solid-state synthesis proce-

dures that selectively yield desired targets with minimal impurities. Using an interface

reaction model, we propose two selectivity metrics – primary and secondary competi-

tion – to measure the favorability of target and impurity phase formation in solid-state

reactions. We first apply these metrics to assess the selectivity of 3,520 solid-state syn-

thesis recipes extracted from the scientific literature, comparing the thermodynamic

optimality of various approaches to popular targets (e.g., LiMn2O4, LiFePO4) un-

der our framework. Secondly, we implement these metrics in a data-driven synthesis

planning workflow and test its use in suggesting synthetic routes to barium titanate

(BaTiO3). From an 18-element chemical reaction network created with first-principles

materials thermodynamic data from the Materials Project, we identify 82,985 synthesis

reactions for BaTiO3 and select nine to test experimentally, characterizing their reac-

tion pathways using ex post facto synchrotron powder X-ray diffraction over a wide

range of temperatures. Analysis of experimental results indicates that our proposed

selectivity metrics correlate with observed target and impurity formation. We identify

two favorably predicted reactions with unconventional BaS/BaCl2 and Na2TiO3 pre-

cursors that yield BaTiO3 more rapidly and with fewer impurities than conventional

solid-state approaches, highlighting the importance of precursor selection and consid-

eration of complex chemistries with additional elements beyond those in the target

material. Altogether, our framework serves as a foundation for the predictive synthesis

of inorganic materials, facilitating the optimization of existing synthesis approaches

and the design of syntheses to novel materials, including those that cannot be easily

made from conventional “off-the-shelf” precursors.
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Introduction

The predictive synthesis of inorganic materials remains a grand challenge in modern chem-

istry and materials science.1 Unlike organic synthesis, which is often described via discrete re-

action steps or mechanisms, inorganic materials synthesis reactions cannot be deconstructed

into elementary steps,2,3 hindering the analogous development of retrosynthetic analysis tech-

niques4 and computer-aided synthesis planning.5 This lack of successful mechanistic models

has made the synthesis of predicted new materials a critical bottleneck in high-throughput

computational materials design efforts,6 with many proposed materials having yet to be

successfully synthesized.7–9

While there are numerous inorganic synthesis methods (e.g., hydrothermal, mechanochem-

ical, sol-gel, intercalation, etc.),10 we limit the scope of this work to bulk solid-state synthesis

via powder reactions. This choice has been motivated by the straightforward and scalable

nature of working with bulk powders, which makes solid-state synthesis suitable for applica-

tions ranging from one-off laboratory synthesis to industrial mass manufacturing. In powder

reactions, product formation proceeds via nucleation and growth at interfacial contact areas

in the powder mixture (Figure 1a).11 The equilibrium phases of the reacting system can be

predicted by constructing a convex hull in free energy and composition space, where the

composition axis is a mixing ratio between the two precursor compositions (Figure 1b).12

Here, we calculate the convex hull exclusively using normalized compositions and energies

(i.e., on a per-atom basis). This construction, which we refer to herein as the “interface

reaction hull”, is a subsection of the compositional phase diagram for binary systems and

a “quasibinary” two-dimensional slice of the full phase diagram for chemical systems with

three or more elements. The exact product species, and the sequence in which they appear,

cannot be predicted with thermodynamics alone; to do so requires intimate knowledge of the

kinetic rates of all physically feasible reactions. However, a commonly adopted theoretical

simplification assumes that the reaction product(s) with the most negative pairwise reac-

tion energy will be the first to nucleate and grow as a powder mixture is heated.11,13 This
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hypothesis is based on two principles: 1) the random packing of solid crystallites results in

very few locations where three or more particles are simultaneously in contact, and 2) the

activation energy barrier to nucleation scales inversely with free energy as ∆G† ∝ γ3

∆G2
rxn

. The

surface energy, γ, is particularly important when comparing the feasibility of reactions with

similar energies.14 Despite this, many solid-state reactions are likely not nucleation-limited

but rather transport-limited due to the relative sluggishness of solid-state diffusion and the

often large driving forces of these reactions (10-100 kJ/mol).15

Figure 1: Modeling chemical reactions at heterogeneous solid interfaces in a
binary/quasibinary chemical system. (a) Cartoon model of a powder reaction between
the hypothetical precursors: α (orange) and β (blue). The nucleation of a new phase, γ
(green), occurs at the α|β interface according to the reaction α + β −−→ γ. (b) A possible
reaction pathway for the powder system in which a secondary reaction of the equilibrium
phase (γ) yields an impurity phase, δ (red). The interface reaction hull (top) shows available
interfacial reactions and their corresponding Gibbs free energies, G, and mixing ratios, x.
The one-dimensional spatial model (bottom) shows reaction steps beginning from an equal
mixture of α and β. The impurity phase, δ, may be kinetically retained in a local equilibrium
state; however, with infinite time, the system should approach the global equilibrium state
composed entirely of γ.
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The complex interplay between thermodynamics and kinetics makes solid-state synthesis

prone to the unpredictable and undesirable formation of impurity phases.13 A classic exam-

ple of a nonselective synthesis is that of the prototypical multiferroic bismuth ferrite, BiFeO3,

via the standard reaction from binary oxides: Bi2O3 + Fe2O3 −−→ 2 BiFeO3. This reaction

typically yields impurity phases Bi2Fe4O9 and Bi25FeO39, which are challenging to isolate and

remove.16,17 Unfortunately, the presence of an impurity phase is difficult to predict a priori,

and is typically attributed to “kinetic” factors or changes in phase equilibria related to pre-

cursor purity, morphology, volatility, or processing conditions. To optimize the performance

of solid-state reactions and maximize conversion to the desired target, the experimentalist

frequently relies on intuition and heuristic rules to choose the 1) precursor compositions

(typically off-the-shelf binary phases such as carbonates, oxides, etc.), 2) grinding/milling

protocol, 3) synthesis annealing temperature, 4) synthesis atmosphere (e.g., vacuum, flowing

O2), 5) synthesis time, and 6) cooling protocol. Heuristics include well-known rules such as

Tamman’s Rule for estimating reaction onset temperature (i.e., two-thirds the melting tem-

perature of the precursor with the lowest melting point),18 as well as “chemical intuition”

or human-biased experimental protocols (e.g., selecting synthesis times based on common

increments, such as four hours, eight hours, etc.).19 Unfortunately, these heuristics may be

insufficient to achieve successful synthesis on the first attempt(s), necessitating follow-up ex-

periments that can be time-intensive and costly. In the worst cases, human-biased heuristics

lead to lower success rates than randomly-generated experimental protocols.20

The a priori calculation of reaction selectivity in solid-state synthesis permits the ranking

of synthesis approaches based on their thermodynamic likelihood of success, thereby circum-

venting the current time-consuming trial-and-error (Edisonian) approach. The assessment of

reaction selectivity is particularly relevant in the proposal of optimal synthesis precursors;21

in several cases, improved navigation of the phase diagram was shown to lead to a more

practical synthesis.11,22–25 However, no solid-state reaction selectivity metric has been for-

mally established. In recent work,14 Aykol et al. demonstrated a computational workflow for
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ranking solid-state synthesis reactions by two performance metrics: 1) a catalytic nucleation

barrier factor incorporating structural similarity and epitaxial matching, and 2) the number

of known competing phases. These metrics perform well in rationalizing successful syntheses

in the literature but lack generality; for example, the nucleation metric is derived assum-

ing all reactions are nucleation-limited, which, as discussed, is not true for many solid-state

reactions. Additionally, while a metric based on the total number of competing phases is

significant as it hints at a measure of reaction selectivity, such a scheme does not account

for the relative stability of these competing phases. A count-based selectivity metric is also

biased by how many phases are known to exist at the present time and the extent to which

various structural configurations (e.g., disordered or defective phases) have been enumerated

within the data.

In this work, we address the longstanding issue of assessing the selectivity of solid-state

reactions by deriving two complementary thermodynamic metrics measuring the degree of

phase competition from the interface reaction model. We incorporate these competition

metrics into a computational synthesis planning workflow for identifying and ranking syn-

thesis reactions, which builds upon the high-throughput reaction enumeration tools we previ-

ously developed for constructing solid-state chemical reaction networks26 from large materials

databases such as the Materials Project.27 Our selectivity metrics, computational workflow,

literature analysis, and experimental findings yield a framework for generating more optimal

and efficient solid-state synthesis routes, providing a foundation for the predictive synthesis

of inorganic materials. The suggestion of nonstandard precursors, particularly those in-

volving additional elements beyond those in the target composition, expands the synthetic

capabilities of the solid-state approach.
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Results and Discussion

Derivation of Selectivity Metrics

The Interface Reaction Hull

To construct the interface reaction hull (Figure 1b), one begins with thermodynamic data

for the reacting system (i.e., a set of relevant phases and their compositions and energies). In

this work, we acquire formation enthalpies, ∆Hf , from the Materials Project database27 and

extend them to Gibbs free energies of formation, ∆Gf (T ), through the use of a prior machine

learning model28 and supplemental experimental thermochemistry data29 (see Methods). For

systems with two elements, the interface reaction hull is equivalent to the binary composi-

tional phase diagram, where each vertex represents a single phase. However, for systems

with three or more elements, the non-precursor vertices include both single phases and mix-

tures of phases. These mixtures are stoichiometric combinations of phases representing the

products of balanced reactions of the precursors. The balanced reactions can be determined

via 1) computing slices of the full compositional phase diagram along the tie-line connecting

the precursors12 or 2) combinatorial reaction enumeration.26 More specifically, the maximum

number of products for a particular vertex is one less than the number of elements in the

system. The interface reaction hull is thus generalized such that all non-precursor vertices

correspond to reactions with coordinates given by the atomic mixing ratio of precursors, x,

and the Gibbs free energy of the reaction, ∆Grxn. This model can be further generalized

to environmental conditions other than fixed temperature and pressure by constructing the

hull with the appropriate thermodynamic potential. For example, in open systems, one

would use the grand potential energy, Φ. Note that in these systems, the hull vertices may

include additional open elemental reactants/products (e.g., O2) that do not factor into the

determination of x.

As a model for solid-state reactions, the interface reaction hull construction also ratio-

nalizes the formation of impurity phases. To demonstrate this, we revisit the binary system
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in Figure 1. In this system, the target phase (γ) is predicted to form first because it is

the phase with the highest driving force of formation (most negative ∆Grxn), irrespective

of the average composition of the total system.12 When the γ phase forms, however, it also

introduces two additional interfaces: α|γ and γ|β. These secondary interfaces can be mod-

eled via the construction of new interface reaction hulls or, more simply, by splitting the

original hull into two subsections (i.e., to the left and the right of the target). Figure 1b

suggests that the γ|β interface should produce an impurity phase via the exergonic reac-

tion, γ + β −→ δ. The full conversion of reactants to the target phase is impeded while

δ persists. In a “one-dimensional” solid-state reaction (Figure 1b, bottom), local thermo-

dynamic equilibrium may be achieved when the system reaches a state in which all stable

product phases on the interface reaction hull have formed and the growth of the product

layer(s) slows down until it ceases entirely. This situation has been observed in previous

experimental studies on diffusion couples.30,31 This observed mixture of products may be

kinetically “stable” (i.e., with locally stable interfaces), but it is not the global equilibrium

state of the system. Rather, the global equilibrium state is the combination of phases that

minimizes the free energy given the composition of the entire powder mixture; in Figure 1b,

this corresponds to entirely γ. In powder reactions, access to the global equilibrium state

is often provided by re-grinding steps in which new interfaces are exposed and mixed to fa-

cilitate complete conversion to the equilibrium products. However, in reacting systems with

significant phase competition and slow transport, high temperatures and long heating times

may be necessary but impractical; pure target synthesis may not be achievable if the desired

products are unstable at high temperatures. These situations can be avoided entirely by

proposing alternative precursors that are more selective (i.e., those with interface reaction

hulls containing few to no competing phases).
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Measuring Phase Competition

To predict the thermodynamic selectivity of a solid-state reaction, we propose two comple-

mentary metrics for assessing phase competition using the interface reaction hull: primary

(C1) and secondary (C2) competition. Although both metrics measure the relative energetic

favorability of competing reactions, they model different mechanisms for impurity formation.

The primary competition measures the favorability of competing reactions of the original pre-

cursors, while the secondary competition measures the favorability of subsequent competing

reactions between the precursors and target phase(s). The origin of the two competition

mechanisms is illustrated in Figure 2.

Figure 2: Origin of primary and secondary competition in solid-state reactions.
In this simple interface reaction hull for a binary (two-element) system, two interface reac-
tions can form a competing phase (magenta square). The primary reaction (yellow arrow)
occurs at the interface between the two precursors α and β, whereas the secondary reaction
(green arrow) occurs between the target phase (pink star) and the remaining β precursor,
leading to a smaller driving force (arrow length). The coordinates of the competing phase,
which must lie within the illustrated bounds (gray triangle) if the target phase is to be stable,
determine the relative values of the primary and secondary reaction energies.

Primary competition, C1, is measured via calculation of the relative thermodynamic

advantage of the most exergonic competing reaction from the original precursors, as assessed

9



through an energy difference:

C1 = ∆Grxn −min
i
(∆Gci). (1)

Here, ∆Grxn is the energy of the target synthesis reaction, and ∆Gci are the energies of

possible competing reactions from the precursors. Lower C1 values are favorable and result in

more selective target formation. When C1 is positive, the target reaction is less energetically

favorable than the competing reaction with the greatest driving force (most negative energy),

suggesting that a competing phase is likely to form. On the other hand, when C1 is negative,

the target reaction is predicted to have the greatest driving force of any reaction on the hull.

By considering only the single most competitive reaction, this functional form avoids the

aforementioned bias related to using the total number of competing reactions. When no

exergonic competing reactions are predicted for an interface, the competing reaction energy

term is assigned a value of zero, representing the scenario in which the precursors do not

react (e.g., α −−→ α). This results in the limiting condition: C1 ≥ ∆Grxn.

Secondary competition, C2, assesses the favorability of impurity phase formation via

secondary reactions between the target and precursor(s). This metric is important and

distinct from primary competition because it measures the relative stability of the products

of the target synthesis reaction with respect to decomposition into the competing phase(s).

Their relative stability can be measured by computing the “inverse distance to the hull”

(Figure 2), which for systems with one competing phase, is equivalent to the secondary

reaction energy, ∆Gd, at the precursor-target interface.

In an interface reaction hull with several competing phases, a sequence of multiple sec-

ondary reactions may occur (Figure 3). When the target phase is formed, it introduces two

new precursor-target interfaces that divide the hull into subsections to the left and right of

the target. A secondary reaction may occur in either subsection, exposing another two inter-

faces. If, at either interface, there is a remaining driving force to form additional competing
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Figure 3: Secondary reaction sequences in an interface reaction hull. (a) The hull
is divided into two subsections to the left (L) and right (R) of the target, representing the
two additional precursor-target interfaces. (b-c) Secondary reaction sequences on each side
of the target, with gray boxes highlighting the final reaction sequences. The recursive, binary
nature results in the number of unique sequences, N(n), following the Catalan numbers un.

phases, then this process may continue in a recursive fashion until all possible secondary

reactions have occurred. There are multiple ways to draw a feasible secondary reaction se-

quence (Figures 3b,c). Consider a particular secondary reaction sequence indexed j. This

sequence has a total energy given by the sum of the energies of its n steps,

∆G2,j =
n∑

k=1

∆Gdj,k = ∆Gdj,1 +∆Gdj,2 + ...+∆Gdj,n , (2)

where the number of reaction steps (n) in the sequence also equals the number of non-reactant

(interior) vertices in the hull subsection.

If every secondary reaction step is required to be the one with the minimum energy (i.e.,
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largest driving force), then only one unique reaction sequence exists in the left and right hull

subsections. However, one must consider the situation where the minimum-energy principle

does not hold due to kinetic limitations; this applies in particular to hulls where all sec-

ondary reactions have similar magnitude driving forces or a particular phase is kinetically

limited from forming, perhaps due to an overall small driving force. Therefore, we must con-

sider the alternative secondary reaction sequences shown in Figures 3b,c. These alternative

sequences are not necessarily less favorable; while each alternative sequence may feature a

first reaction step with a smaller driving force (i.e., small ∆Gdj,1), the latter steps may have

larger magnitude energies, resulting in comparable total energy (∆G2,j) for the particular

sequence.

To encompass all combinatorial possibilities in our estimation of secondary competition,

we choose to compute the mean total energy of all feasible secondary reaction sequences:

∆G2 =
1

N

N∑

j=1

∆G2,j. (3)

Determining the total number of unique secondary reaction sequences, N , is mathematically

equivalent to calculating the total number of full binary trees with n interior nodes, which

yields the Catalan number sequence, un = 1, 1, 2, 5, 14, 42, 132, 429, ...(n = 0, 1, 2, ...).32 Using

this connection to the Catalan numbers, we developed a non-recursive algorithm for calcu-

lating ∆G2 that is significantly faster than the equivalent recursive solution (see Methods).

Finally, we formulate the C2 metric such that it accounts for all possible reaction se-

quences in either hull subsection to the left (L) and right (R) of the target phase:

C2 = −
(
∆G2,L +∆G2,R

)
. (4)

The negative factor is included so that a lower C2 value corresponds to a more favorable

selectivity. Because our definition of a secondary reaction assumes that ∆Gd ≤ 0, the

secondary competition metric obeys the limiting behavior: C2 ≥ 0.
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We note that both C1 and C2 implicitly assume that the target phase is thermodynam-

ically stable (“on the hull”) under the conditions for which the equilibrium phase diagram

is derived. However, the competition metrics are still calculable for a metastable phase by

manually decreasing its energy until it becomes stable.

Application to Experimental Literature

Using the competition metrics C1 and C2, we now assess the selectivities of solid-state re-

actions previously reported in the experimental literature and use these to rank synthesis

recipes by their predicted thermodynamic optimality. Reaction energies and competition

metrics were calculated for 3,520 unique experiments reported in the text-mined solid-state

reaction literature dataset by Kononova et al.33 Each unique experiment corresponds to a

particular balanced reaction, maximum synthesis temperature, and atmospheric environment

(e.g., air, flowing O2, etc.). We modeled all reactions containing up to two solid precursors

and an optional gaseous reactant (see Methods). Reactions that were reported with no

particular atmospheric environment are denoted as “closed” and modeled with Gibbs free

energies (∆Grxn), while those with a defined environment are denoted as “open” and mod-

eled using grand potential energies (∆Φrxn). The results of these calculations are shown in

Figures 4a,b.

The synthesis “maps” (Figures 4a,b) allow one to identify favorable reactions by com-

paring the relative weights of the three reaction metrics: reaction energy (∆Erxn), primary

competition (C1), and secondary competition (C2). Thermodynamically optimal reactions

are ones that minimize all three metrics, resulting in placement in the lower left region of

each plot. According to our calculations, many reactions reported in the literature are pre-

dicted to be energetically favorable and selective. Approximately 17.3% of reactions have no

exergonic competing reactions on the interface reaction hull (i.e., they are on the bounding

line C1 = ∆Erxn), and 23.0% of reactions have negligible secondary competition (C2 ≤ 0.001

eV/atom). Assuming the literature reactions are experimentally feasible, one would expect
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Figure 4: Thermodynamic analysis of synthesis recipes in the experimental
solid-state literature. Synthesis maps of 3,520 literature reactions from the Kononova
et al. dataset, plotted on a shared axis of reaction energy, ∆Erxn, and independent axes of
(a) primary competition, C1, and (b) secondary competition, C2. These selectivity metrics
are constrained by their lower bounds: C1 = ∆Erxn (diagonal parity line) and C2 = 0. (c)
Median transformed cost (Γt) rankings of synthesis recipes for each of the 40 most popular
targets in the dataset. The shading marks the targets with average recipes below (green) or
above (pink) the median Γt of all experiments in the dataset (-0.089). Selected recipes are
discussed in Tables 1 and 2. The full data set is provided in the Supporting Information.

all calculated reaction energies to be negative. Our thermodynamic modeling captures this

within reasonable error: 82.8% of reactions have a negative reaction energy, and 97.0% of

reactions have ∆Erxn ≤ 0.1 eV/atom. Of the reactions with positive energies, most (87.1%)
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contain one or more common gases: O2 (85.1%), CO2 (48.8%), or H2O (8.4%). A major

source of error in our reaction energy calculations is likely the disagreement between the

assumed and actual gas partial pressures; it is often challenging to model the actual environ-

mental conditions of synthesis, as it requires that they be both 1) accurately reported and

2) correctly extracted from the text. Another known source of error is systematic challenges

in estimating GGA-calculated formation energies of carbonate compounds.14 However, this

has been addressed and partially mitigated with a fitted energy correction (see Methods).

To quantitatively assess thermodynamic optimality, we follow a similar approach to prior

works24,26 and define a cost function, Γ, that combines the driving force and reaction se-

lectivity evaluated at a particular set of conditions (i.e., temperature and atmosphere). In

this work, we opt to use a simple linear weighted summation of the reaction’s energy and

competition scores,

Γ = x0∆Erxn + x1C1 + x2C2, (5)

where ∆Erxn is the reaction energy (either ∆Grxn or ∆Φrxn), and x0, x1, and x2 are user-

defined weights for each parameter. Due to the different scaling of each parameter, we find

that a non-equal weighting of x0 = 0.10, x1 = 0.45, and x2 = 0.45 produces reasonably

diverse results that do not significantly favor one parameter over another. We note that this

selection is arbitrary and subject to further optimization.

Unfortunately, closed and open reactions cannot be rigorously compared due to their

different energy scales (Gibbs free energies vs. grand potential energies). This is further

evidenced by differences in the reaction metric distributions (Figures 4a,b). Since no ideal

solution exists for ranking and comparing reactions under different environmental conditions,

we transform the cost function to account for the energy scale difference. To do this, we

apply a power transformation to the cost distributions for the closed and open reactions,

resulting in monotonically transformed costs, Γt, whose distributions are closer to standard

normal distributions (Figure S1). This new variable facilitates a fairer comparison between

closed and open reactions, allowing for a more realistic ranking of synthesis recipes.
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Figure 4c shows the median values of Γt calculated from the synthesis recipes of the 40

most popular targets in the literature dataset (i.e., those with the most reactions extracted

from the text). Given the extent of coverage of our thermodynamic data, we limit our

analysis to only the targets for which we have at least five recipes successfully calculated

(see Methods). In the following sections, we select several targets with costs below and above

the median Γt value, analyzing the factors leading to their optimal and suboptimal synthesis

recipes, respectively.

Optimal Literature Recipes

Of the 40 most popular targets in the literature dataset (Figure 4c), twenty have synthe-

sis recipes with an average cost value (Γt) below the dataset’s median (-0.089), indicat-

ing generally favorable thermodynamic optimality. A selection of these targets and their

highest/lowest-ranked recipes are provided in Table 1, along with other selected reactions

of interest. DOIs and raw (untransformed) costs for each reaction are provided in the Sup-

porting Information.

For many targets in Table 1, the conventional reaction involving off-the-shelf binary

precursors is predicted to be thermodynamically optimal. For example, in the synthesis of

the spinel ZnGa2O4, the reaction between the binary oxides, ZnO + Ga2O3 −−→ ZnGa2O4,

is already perfectly selective (C1 = ∆Erxn and C2 = 0) over all temperatures in the dataset.

Furthermore, these precursors appear in all 17 calculated literature recipes for this target.

The favorability of the conventional route seems to apply to several other targets presented

here, including BiVO4, CoFe2O4, Y3Al5O12, and BiFeO3. Since the precursors are already

favorable for these phases, we can instead analyze which conditions are most favorable for

target phase formation. For CoFe2O4, higher temperatures in an open oxygen environment

appear to be the most optimal. On the other hand, lower temperatures in an open oxygen

environment appear to favor the production of BiVO4 and BiFeO3. Finally, for Y3Al5O12,

there appears to be a tradeoff between selectivity (which is optimal at lower temperatures)
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and driving force (which is optimal at high temperatures); it appears that intermediate

temperatures (600 ℃) in a closed environment result in the most suitable compromise. We

note, however, that there are many reasons to use specific processing conditions outside of the

pursuit of target phase purity (e.g., improved density, annihilation of defects, optimization

of crystallite sizes, etc.). These alternative reasons may explain some of the variability of

conditions reported in the literature.

Interestingly, several targets in Table 1 feature synthesis recipes that appear extremely

unfavorable. These often involve elemental precursors, such as Bi+0.5 V2O5+0.75 O2 −−→

BiVO4, or Bi+0.5 Fe2O3+0.75 O2 −−→ BiFeO3. Referencing the original articles from which

these reactions were sourced34,35 suggests that these precursors were not actually used, and

the reaction’s inclusion in the dataset is likely the result of an error in the literature extraction

process. This explains some other impractical and highly suboptimal routes in the dataset,

such as reactions involving alkali metal precursors (e.g., SiO2 + 4 Li + O2 −−→ Li4SiO4).

For other targets such as LiCoO2, Li4SiO4, and LiNiO2, there appears to be great vari-

ability in precursor selection in the literature. For LiCoO2, the optimal synthesis recipe

from our calculations is the reaction of LiOH and Co3O4 in a flowing oxygen environment

at low to intermediate temperatures (i.e., 700 ℃). The use of Co3O4 appears to significantly

outperform recipes using CoCO3. Additionally, using LiOH may offer a thermodynamic

advantage over Li2CO3, although with little effect on the reaction selectivity. A similar con-

clusion applies to the synthesis of Li4SiO4, although the use of lithium carbonate appears to

be more favorable at high temperatures in an open-oxygen environment. LiOH (particularly

the monohydrate) also appears to offer some advantage in the synthesis of LiNiO2, especially

in oxygen at low temperatures (480-600 ℃).

Suboptimal Literature Recipes

Reactions can still be successful despite high C1 and C2 values. However, our thermodynamic

assessment suggests that these reactions are suboptimal and likely require some combination
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Table 1: Thermodynamic analysis of optimal experimental synthesis recipes for selected
popular targets in the literature. The ranking of reactions is determined by the transformed
cost, Γt. The highest- and lowest-ranked reactions are shown along with selected reactions
of interest. Raw costs and DOIs are available in the Supporting Information.

Reaction Temp. Energy Open C1 C2 Γt

Target Rank (ºC) (eV/at) (eV/at) (eV/at) (a.u.)

ZnGa2O4

1 ZnO + Ga2O3 −→ ZnGa2O4 1400 -0.218 O -0.218 0.000 -1.622
12 ZnO + Ga2O3 −→ ZnGa2O4 1200 -0.088 -0.088 0.000 -0.969
17 ZnO + Ga2O3 −→ ZnGa2O4 500 -0.067 -0.067 0.000 -0.818

BiVO4

1 0.5 V2O5 + 0.5 Bi2O3 −→ BiVO4 600 -0.529 O -0.210 0.171 -1.156
5 0.5 V2O5 + 0.5 Bi2O3 −→ BiVO4 500 -0.169 -0.061 0.034 -0.713
12 Bi + 0.5 V2O5 + 0.75 O2 −→ BiVO4 600 -1.860 O 0.801 4.489 2.412

CoFe2O4

1 CoO + Fe2O3 −→ CoFe2O4 1250 -0.088 O -0.062 0.000 -0.877
3 0.3333 Co3O4 + Fe2O3 −→ CoFe2O4 +

0.1667 O2

950 -0.058 O -0.018 0.011 -0.662

11 2 Fe + Co + 2 O2 −→ CoFe2O4 1400 -1.738 O 0.223 2.957 2.111
14 CoCO3 + Fe2O3 −→ CoFe2O4 + CO2 1400 -0.215 0.156 0.370 2.781

LiCoO2

1 LiOH + 0.3333 Co3O4 + 0.08333 O2 −→
LiCoO2 + 0.5 H2O

700 -0.120 O -0.012 -0.000 -0.727

4 0.5 Li2CO3 + 0.3333 Co3O4 + 0.08333 O2

−→ LiCoO2 + 0.5 CO2

950 -0.061 O -0.014 -0.000 -0.692

23 0.5 Li2CO3 + CoCO3 + 0.25 O2 −→
LiCoO2 + 1.5 CO2

300 -0.121 O 0.154 0.357 0.532

30 Co + LiOH·H2O + 0.75 O2 −→ LiCoO2 +
1.5 H2O

900 -0.382 O 1.001 1.454 1.992

Li4SiO4

1 SiO2 + 2 Li2CO3 −→ Li4SiO4 + 2 CO2 1445 -0.040 O -0.017 -0.000 -0.683
7 SiO2 + 4 LiOH −→ Li4SiO4 + 2 H2O 700 -0.049 -0.004 -0.000 -0.412
10 SiO2 + 2 Li2CO3 −→ Li4SiO4 + 2 CO2 1150 -0.010 -0.005 -0.000 -0.366
18 SiO2 + 4 Li + O2 −→ Li4SiO4 800 -2.133 O 0.163 2.830 2.038

LiNiO2

1 NiO + LiOH·H2O + 0.25 O2 −→ LiNiO2 +
1.5 H2O

480 0.008 O 0.010 0.002 -0.559

4 NiO + 0.5 Li2O + 0.25 O2 −→ LiNiO2 800 0.032 O 0.058 0.021 -0.344
6 Ni(OH)2 + LiOH + 0.25 O2 −→ LiNiO2 +

1.5 H2O
770 0.074 O 0.074 -0.000 -0.331

24 NiO + 0.5 Li2O2 −→ LiNiO2 800 -0.035 0.067 0.147 0.973
27 Ni(OH)2 + Li + 0.5 O2 −→ LiNiO2 + H2O 700 -0.536 O 1.770 3.044 2.396

Y3Al5O12

1 1.5 Y2O3 + 2.5 Al2O3 −→ Y3Al5O12 600 -0.071 -0.034 0.000 -0.623
15 1.5 Y2O3 + 2.5 Al2O3 −→ Y3Al5O12 1727 -0.240 O -0.051 0.221 -0.260
36 5 Al(OH)3 + 1.5 Y2O3 −→ Y3Al5O12 + 7.5

H2O
1300 -0.120 -0.007 0.118 0.202

BiFeO3

1 0.5 Bi2O3 + 0.5 Fe2O3 −→ BiFeO3 600 -0.073 O 0.034 0.053 -0.386
4 0.5 Bi2O3 + 0.5 Fe2O3 −→ BiFeO3 100 -0.011 0.000 0.004 -0.312
38 Bi + 0.5 Fe2O3 + 0.75 O2 −→ BiFeO3 900 -1.285 O 1.087 3.558 2.364

of 1) long heating times to promote thermodynamic equilibrium, 2) follow-up regrinding

steps, or 3) fine-tuning of temperature and reaction atmosphere. In Table 2, we highlight

several popular target materials that are associated with higher-than-average costs for their

synthesis recipes.

Our findings suggest that the targets in Table 2 require a more judicious synthesis due

to inherently greater competition in their phase space. Many targets are ranked poorly

because the conventional reaction is predicted to be suboptimal. This appears to be true
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Table 2: Thermodynamic analysis of suboptimal experimental synthesis recipes for selected
popular targets in the literature. The ranking of reactions is determined by the transformed
cost, Γt. The highest- and lowest-ranked reactions are shown along with selected reactions
of interest. Raw costs and DOIs are available in the Supporting Information.

Reaction Temp. Energy Open C1 C2 Γt

Target Rank (ºC) (eV/at) (eV/at) (eV/at) (a.u.)

PbTiO3

1 PbCO3 + TiO2 −→ PbTiO3 + CO2 1200 -0.402 O 0.118 0.750 0.960
2 PbO + TiO2 −→ PbTiO3 1100 -0.360 O 0.186 0.694 0.987
13 PbO + TiO2 −→ PbTiO3 800 -0.163 0.136 0.288 2.172

Na2Ti3O7

1 2 NaOH + 3 TiO2 −→ Na2Ti3O7 + H2O 750 -0.058 O 0.079 0.046 -0.273
3 Na2CO3 + 3 TiO2 −→ Na2Ti3O7 + CO2 1100 0.009 0.108 0.104 1.025
8 Na2CO3 + 3 TiO2 −→ Na2Ti3O7 + CO2 80 0.053 0.202 0.200 2.344

NaTaO3

1 0.5 Na2CO3 + 0.5 Ta2O5 −→ NaTaO3 +
0.5 CO2

1150 -0.088 0.035 0.085 0.300

4 0.5 Na2CO3 + 0.5 Ta2O5 −→ NaTaO3 +
0.5 CO2

1200 -0.233 O 0.285 0.665 1.098

9 0.5 Na2CO3 + 0.5 Ta2O5 −→ NaTaO3 +
0.5 CO2

900 -0.194 O 0.441 0.866 1.435

Ca3(PO4)2

1 CaCO3 + Ca2P2O7 −→ Ca3(PO4)2 + CO2 800 -0.068 -0.013 -0.000 -0.494
3 3 CaCO3 + 2 NH4H2PO4 −→ Ca3(PO4)2

+ 3 CO2 + 3 H2O + 2 H3N
1150 -0.199 H 0.078 0.269 0.187

4 3 CaCO3 + 2 (NH4)2HPO4 −→ Ca3(PO4)2
+ 3 CO2 + 3 H2O + 4 H3N

1200 -0.156 N 0.105 0.374 0.463

10 3 CaO + P2O5 −→ Ca3(PO4)2 550 -0.641 -0.007 0.463 1.673
12 3 CaCO3 + 2 (NH4)2HPO4 −→ Ca3(PO4)2

+ 3 CO2 + 3 H2O + 4 H3N
1200 -0.143 0.094 0.336 2.232

Li2MnO3

1 Li2CO3 + MnO2 −→ Li2MnO3 + CO2 975 -0.096 O -0.015 0.015 -0.670
4 2 LiOH + MnO2 −→ Li2MnO3 + H2O 650 -0.092 -0.024 0.010 -0.533
5 MnO2 + 2 LiOH·H2O −→ Li2MnO3 + 3

H2O
70 -0.059 0.001 0.016 -0.295

14 MnCO3 + Li2CO3 + 0.5 O2 −→ Li2MnO3

+ 2 CO2

500 -0.196 O 0.262 0.545 0.942

15 MnCO3 + 2 LiOH·H2O + 0.5 O2 −→
Li2MnO3 + CO2 + 3 H2O

450 -0.187 O 0.253 0.554 0.943

25 2 Li + MnO2 + 0.5 O2 −→ Li2MnO3 700 -1.971 O 0.400 2.399 1.989

LiMn2O4

1 0.5 Li2CO3 + 2 MnO2 −→ LiMn2O4 + 0.5
CO2 + 0.25 O2

700 -0.032 O 0.041 0.051 -0.347

2 LiOH + 2 MnO2 −→ LiMn2O4 + 0.5 H2O
+ 0.25 O2

1000 -0.052 O 0.031 0.067 -0.343

12 0.5 Li2CO3 + Mn2O3 + 0.25 O2 −→
LiMn2O4 + 0.5 CO2

950 -0.073 O 0.030 0.110 -0.240

47 2 MnCO3 + 0.5 Li2CO3 + 0.75 O2 −→
LiMn2O4 + 2.5 CO2

400 -0.319 O 0.148 0.488 0.664

63 Mn2O3 + 0.5 Li2O2 −→ LiMn2O4 800 -0.138 0.121 0.283 2.072

LiFePO4

1 0.3333 Li3PO4 + 0.3333 Fe3(PO4)2 −→
LiFePO4

600 -0.020 -0.008 0.002 -0.386

2 LiPO3 + 0.5 Fe2O3 −→ LiFePO4 + 0.25 O2 1200 -0.151 O 0.108 0.120 -0.060
3 0.3333 Li3PO4 + 0.3333 Fe3(PO4)2·8H2O

−→ LiFePO4 + 2.667 H2O
800 -0.065 0.000 0.068 0.012

4 LiOH·H2O + Fe(PO4)·2H2O −→ LiFePO4

+ 3.5 H2O + 0.25 O2

650 -0.111 O 0.062 0.247 0.149

5 0.5 Li2CO3 + FePO4 −→ LiFePO4 + 0.5
CO2 + 0.25 O2

700 0.006 O 0.189 0.122 0.207

BaTiO3

1 BaCO3 + TiO2 −→ BaTiO3 + CO2 1050 -0.056 O 0.075 0.065 -0.230
16 BaCO3 + TiO2 −→ BaTiO3 + CO2 1100 -0.028 0.025 0.026 -0.045
37 BaO + TiO2 −→ BaTiO3 800 -0.239 0.061 0.168 0.778
40 BaO + TiO2 −→ BaTiO3 1300 -0.225 0.080 0.167 0.916

for lead titanate (PbTiO3), which on average, has the most suboptimal recipe of any tar-

get investigated (Figure 4c). The high C1 and C2 values for PbTiO3 synthesis seem to be
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almost entirely related to the instability of the PbO precursor, both with respect to de-

composition and to the formation of a solid-solution phase. In our calculations, the latter

manifests as the predicted stabilization of a theoretical Pb15TiO17 phase. Our modeling of

PbO instability supports experimental observations suggesting that the volatility of PbO at

higher temperatures results in a challenging PbTiO3 synthesis.36 The use of PbCO3 as an

alternative appears to perform similarly, albeit with a slightly more favorable driving force

and lower C1.

For Ca3(PO4)2, Li2MnO3, and LiFePO4, the highest-ranked synthesis recipes appear to

be nearly thermodynamically optimal already (i.e., low C1 and C2). The optimal recipe for

Ca3(PO4)2 is the reaction of stoichiometric amounts of CaCO3 and Ca2P2O7 at moderate

temperatures (800 ℃) in a closed environment. For Li2MnO3, the reaction of Li2CO3 and

MnO2 in open-oxygen environments at moderately high temperatures (900-975 ℃) is favor-

able, and the use of LiOH in a closed environment at lower temperatures (650 ℃) appears

to be similarly advantageous.37 Finally, for the synthesis of LiFePO4, the use of Li3PO4 and

Fe3(PO4)2 in a closed environment at lower temperatures (600 ℃)38 appears to be highly

selective and greatly outperforms the other recipes analyzed in the literature dataset.

For the remaining targets Na2Ti3O7, NaTaO3, LiMn2O4, and BaTiO3, even the highest-

ranked literature synthesis recipes are theoretically suboptimal, which suggests that these

materials are suitable candidates for future synthesis optimization efforts. Recipes for

Na2Ti3O7 generally feature poor driving forces and low selectivities; however, using NaOH

as an alternative precursor mitigates this some. All NaTaO3 recipes in our dataset used the

same precursors, but those with open-oxygen environments resulted in substantially higher

phase competition. LiMn2O4 synthesis appears to follow similar trends as those discussed

previously for LiMn2O3; the lithium carbonate route in open air appears to be the most

optimal of the recipes explored, despite a somewhat low driving force and moderate com-

petition.39 The use of a MnCO3 precursor is not recommended due to greatly decreased

selectivity. Finally, for BaTiO3, the conventional BaCO3 route at high temperatures (1050
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℃) and open oxygen conditions appears to be the most favorable; however, with this route,

the driving force is still somewhat low and features a moderate amount of phase competition.

The BaTiO3 system will be examined extensively in the following sections as an experimental

case study for assessing reaction selectivity.

The literature reaction data reveal an inherent tradeoff between driving force and se-

lectivity. Reactions with only elemental precursors (e.g., Li metal, O2 gas) typically have

significantly greater driving forces but also much higher competition scores (i.e., lower se-

lectivity), with median values of ∆Grxn = −0.272, C1 = 0.016, and C2 = 0.112 eV/atom for

the closed reactions. For reactions with at least one binary (two-element) precursor, these

values shift to ∆Grxn = −0.037, C1 = 0.006, and C2 = 0.020 eV/atom. In other words,

sourcing an element from a precursor with pre-formed bonds yields an interface reaction hull

representing a more selective slice of the phase diagram, but at the expense of sacrificing

some of the available reaction energy. Fortunately, this tradeoff is not universal and can

be circumvented by considering more complex precursor chemistries containing additional

elements other than those in the target composition. For example, in oxide synthesis, the use

of hydroxides, carbonates, and salts (as in metathesis reactions) often permits the formation

of thermodynamically favorable byproducts that increase the reaction’s driving force and

selectivity. The use of additional elements beyond those found in the target composition

has been dubbed “hyperdimensional chemistry”40 due to its connection to phase diagram

geometry; adding a new compositional axis greatly increases the number of ways the phase

space can be sliced, allowing one to thermodynamically “shortcut” otherwise unavoidable

competing impurity phases. However, not all elemental precursors are unselective, and the

necessity of these alternative routes depends on the degree of phase competition in the chem-

ical system of interest. It is typically favorable to synthesize a binary target comprised of

elements commonly existing in only a single oxidation state; for example, Cd+Te −−→ CdTe

has both perfect selectivity (C1 = −0.058, C2 = 0.000 eV/atom) and a high driving force

(∆Grxn = −0.576 eV/atom) at 800 ℃.
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Case Study: Synthesis of Barium Titanate (BaTiO3)

To investigate whether our reaction selectivity metrics accurately describe impurity forma-

tion, we designed and performed experiments testing the influence of precursor selection on

the reaction pathway observed during solid-state synthesis. To suggest these experiments,

we developed a computational synthesis planning workflow that integrates our proposed se-

lectivity metrics with previous methods for computing solid-state reaction networks.26 The

workflow has five user inputs: 1) target composition, 2) additional elements, 3) tempera-

ture, 4) thermodynamic stability cutoff (i.e., maximum Ehull), and 5) chemical potential of

an open element, if any. The workflow returns a ranked list of possible synthesis reactions

based on the cost function implemented in Equation 5.

We selected the ferroelectric barium titanate (BaTiO3) as a case study system for testing

our predictions. In addition to being a technologically important and well-studied material

in the literature, BaTiO3 is an ideal target for investigating the thermodynamic selectiv-

ity of solid-state reactions due to the high number of competing phases in the Ba–Ti–O

chemical system (Figure S2). Conventional routes from binary oxides are well-known to

proceed through intermediates,41 and at least 12 unique ternary compositions have been ex-

perimentally observed, including the compositional neighbors BaTi2O5 and Ba2TiO4, which

frequently appear during synthesis (the latter in particular). Other commonly observed mi-

nor impurities include Ba4Ti13O30, BaTi4O9, and Ba6Ti17O40. Additional compositions in

this space, such as Ba2Ti9O20, BaTi5O11, Ba4Ti12O27, and Ba2Ti6O13, have been previously

synthesized but are less commonly observed as intermediates or impurity phases.41 Another

motivation for selecting BaTiO3 is the kinetic accessibility of its chemical system; even with

such a high number of competing Ba–Ti–O phases, the solid-state synthesis of barium ti-

tanate is generally considered facile. The ease with which Ba–Ti–O phases can be synthesized

suggests that kinetic factors do not significantly divert reaction outcomes from those that are

thermodynamically favorable, providing greater justification for our attempts at assessing

the likelihood of intermediate/impurity formation through a purely thermodynamic lens.
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Using our synthesis planning workflow, we computed and ranked 82,985 binary (two-

precursor) synthesis reactions producing BaTiO3, selected from a massive 18-element reac-

tion network composed of all 2,536,160 enumerated binary reactions among 2,417 phases

with energies ≤ 0.050 meV/atom above the hull. To capture alternative chemistries (e.g.,

metathesis reactions, gas-forming reactions, ion exchange reactions, etc.), we selected a chem-

ical system consisting of the target elements (Ba, Ti, O), alkali metals (Li, Na, K) and al-

kaline earth metals (Mg, Ca, Sr), halogens (F, Cl, Br), chalcogens (S), pnictogens (N, P),

and other common elements (B, C, H). The ∆Grxn, C1, and C2 values for all calculated

synthesis reactions are shown in the synthesis maps illustrated in Figure 5. We calculated

these values at an intermediate temperature of T = 600 ℃, which is near the median of our

experimentally accessible temperature range (see Methods). We also considered the model-

ing of open-O2 reactions; similar results are shown in Figure S3 for 62,133 open reactions in

a more constrained subsystem.

The determination of an optimal synthesis reaction can be formulated as an optimization

problem of simultaneous minimization of the three reaction metrics: ∆Grxn, C1, and C2. A

common approach for multi-objective optimization in synthesis planning is the identification

of the Pareto front.14 Here, we calculate a three-dimensional Pareto front for the BaTiO3

synthesis reactions (Table 3). The Pareto front reactions for the open-O2 system are provided

in the Supporting Information.

Many Pareto-optimal reactions feature unconventional reactants and byproducts. BaO2

and Ba5(TiN3)2 are the most commonly appearing precursors (eight times each), followed by

Ba(NO3)2 and Ba3(PO4)2 (four times each). Nearly all reactions (31 of 33) involve precursors

containing additional elements other than Ba, Ti, and O. In particular, nitrogen is used in

over half of the reactions (19 of 33), each featuring N2 gas formation. While unconventional,

the high prevalence of nitride precursors in the Pareto front is not theoretically unreasonable;

nitrides generally have less negative formation energies than oxides, making oxide formation

with N2 gas evolution both energetically and entropically favorable.
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Figure 5: Synthesis maps of 82,985 calculated reactions producing BaTiO3.
Target reactions and their competition scores are extracted from an 18-element network of
2,536,160 reactions modeled at a temperature of T = 600 ℃. Reactions are plotted on a
shared axis of reaction energy, ∆Grxn, and on independent axes of (a) primary competition,
C1, and (b) secondary competition, C2. The sharp boundaries are lower-bound limits of
C1 = ∆Grxn and C2 = 0. Blue diamonds indicate selected reactions experimentally tested
in this work. Orange squares represent reactions on the three-dimensional Pareto front of
∆Grxn, C1, and C2.

However, many of the reactions appearing on the Pareto front are impractical from an

experimental standpoint. For example, the aforementioned nitride precursors are likely chal-

lenging to synthesize and handle. Other Pareto front reactions involve theoretical phases

(e.g., LiTi2N3), uncommon or toxic precursors (e.g., Ba5(TiN3)2, SO2), difficult-to-remove
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Table 3: Pareto front reactions to BaTiO3 and their associated Gibbs free energies, ∆Grxn

(T = 600 ℃), primary competition scores, C1, secondary competition scores, C2, and costs,
Γ. All units are in eV/atom.

Reaction ∆Grxn C1 C2 Γ Theoretical
Rank

1 2 TiP + 4.5 BaCO3 −→ BaTiO3 + Ba3(PO4)2 + 0.5 BaTi2O5

+ 4.5 C
-0.465 -0.465 -0.000 -0.256

2 3 Ba(NO3)2 + 3.333 LiTi2N3 −→ BaTiO3 + 2 BaTi2O5 +
1.667 Li2TiO3 + 8 N2

-0.868 -0.302 -0.000 -0.223 LiTi2N3

4 MgTiN2 + 0.6 Ba(NO3)2 −→ MgO + 0.2 BaTiO3 + 0.4
BaTi2O5 + 1.6 N2

-0.901 -0.223 0.008 -0.187

6 8 O2 + Ba4TiP4 −→ BaTiO3 + Ba3P4O13 -2.330 0.062 0.136 -0.144
7 4 BaO2 + 2 Ti −→ Ba3TiO5 + BaTiO3 -1.489 -0.021 0.036 -0.142
18 0.25 Mg4TiN4 + 0.3 Ba(NO3)2 −→ MgO + 0.2 BaTiO3 + 0.05

Ba2TiO4 + 0.8 N2

-0.983 -0.057 0.078 -0.089 Mg4TiN4

28 TiO + BaO2 −→ BaTiO3 -1.044 -0.034 0.099 -0.075
33 0.75 Ti7P4 + 0.3333 Ba5P3O12F −→ BaTiO3 + 0.25 Ba2TiO4

+ 4 TiP + 0.1667 BaF2

-0.129 -0.129 -0.000 -0.071 Ba5P3O12F

54 MgTi(SO4)3 + 4 BaMg2 −→ BaTiO3 + 9 MgO + 3 BaS -1.515 -0.005 0.225 -0.052 MgTi(SO4)3
63 4 Ti(NO3)4 + 5 Ba4P2O −→ Ba2TiO4 + 3 BaTiO3 + 5

Ba3(PO4)2 + 8 N2

-1.570 -0.018 0.261 -0.047

85 2.25 TiC + 0.5 Ba3(PO4)2 −→ BaTiO3 + 0.25 Ba2TiO4 + TiP
+ 2.25 C

-0.067 -0.067 -0.000 -0.037

90 1.25 Ba5(TiN3)2 + 1.125 Ti(NO3)4 −→ BaTiO3 + 2.625
Ba2TiO4 + 6 N2

-1.287 -0.029 0.236 -0.035

108 0.75 Ti7P4 + 0.5 Ba3(PO4)2 −→ BaTiO3 + 0.25 Ba2TiO4 +
4 TiP

-0.150 -0.038 -0.000 -0.032

199 1.45 Ti(ClO4)4 + 0.8 Ba6Mg23 −→ BaTiO3 + 0.45 Ba2TiO4

+ 18.4 MgO + 2.9 BaCl2

-2.540 -0.008 0.527 -0.020

259 3 BaO2 + Ti2N2O −→ BaTiO3 + Ba2TiO4 + N2 -0.913 -0.099 0.268 -0.015 Ti2N2O
498 TiNCl + 1.5 BaO2 −→ BaTiO3 + 0.5 BaCl2 + 0.5 N2 -0.967 -0.150 0.350 -0.007
547 Li2TiO3 + 0.3333 Ba3(PO4)2 −→ BaTiO3 + 0.6667 Li3PO4 -0.011 -0.011 -0.000 -0.006
552 1.5 BaO2 + TiNF −→ BaTiO3 + 0.5 BaF2 + 0.5 N2 -0.960 -0.153 0.354 -0.006 TiNF
651 TiBrN + 1.5 BaO2 −→ BaTiO3 + 0.5 BaBr2 + 0.5 N2 -0.963 -0.152 0.357 -0.004
1850 Ba3(PO4)2 + Ca4Ti3O10 −→ Ca4P2O9 + 3 BaTiO3 0.010 0.010 -0.000 0.005
2825 0.05882 Ba2Mg17 + 0.1118 Ti(NO3)4 −→ MgO + 0.1059

BaTiO3 + 0.005882 Ba2TiO4 + 0.2235 N2

-1.896 -0.004 0.447 0.010

6598 3 Ti(SO4)2 + 8 BaMg2 −→ BaTiO3 + 16 MgO + 6 BaS +
BaTi2O5

-1.628 -0.006 0.413 0.020

7657 2 BaO2 + 0.25 NaTi5(NCl)5 −→ BaTiO3 + 0.25 Ba2TiO4 +
0.25 NaCl + 0.5 BaCl2 + 0.625 N2

-0.932 -0.079 0.336 0.023 NaTi5(NCl)5

8896 0.5 Ba5(TiN3)2 + 3 KNOF2 −→ BaTiO3 + 3 KF + 1.5 BaF2

+ 3 N2

-1.170 -0.040 0.356 0.025

13191 TiO2 + 0.5 Ba2Ca(BO2)6 −→ BaTiO3 + 0.5 Ca(B3O5)2 0.060 0.060 -0.000 0.033
15339 0.5 Ba5(TiN3)2 + 3 NOF −→ BaTiO3 + 1.5 BaF2 + 3 N2 -1.667 -0.058 0.509 0.036
39153 0.5 Ba5(TiN3)2 + 1.5 SO2 −→ BaTiO3 + 1.5 BaS + 1.5 N2 -1.102 -0.042 0.450 0.074
45245 0.5 Ti2S + 1.5 BaO2 −→ BaTiO3 + 0.5 BaS -1.366 -0.068 0.563 0.086
57844 0.8 Ba5(TiN3)2 + 0.45 Ti(ClO4)4 −→ BaTiO3 + 1.05 Ba2TiO4

+ 0.9 BaCl2 + 2.4 N2

-1.729 -0.077 0.728 0.120

64696 5 MgTiH4 + 3 Ba(NO3)2 −→ BaTiO3 + 5 MgO + 10 H2 + 2
BaTi2O5 + 3 N2

-1.142 -0.078 0.659 0.147

65291 0.8 Ba5(TiN3)2 + 1.8 Br2O3 −→ BaTiO3 + 0.6 Ba2TiO4 +
1.8 BaBr2 + 2.4 N2

-1.810 -0.055 0.790 0.150

65313 0.5 Ba5(TiN3)2 + 1.5 BrO2F −→ BaTiO3 + 1.5 BaBrF + 1.5
N2

-1.878 -0.053 0.804 0.150

66253 3.5 Ba5(TiN3)2 + 9 ClO3 −→ BaTiO3 + 6 Ba2TiO4 + 4.5
BaCl2 + 10.5 N2

-1.841 -0.021 0.775 0.155

byproducts (e.g., Ba2TiO4), or refractory precursors (e.g., TiC). Some of these suggested re-

actions can be removed easily with user-applied filters that account for specific experimental
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restrictions. For example, one can supply a list of available precursor compositions (“off-the-

shelf” phases) or composition types to be avoided (e.g., sulfides, acids, etc.). Other reactions

require a more careful manual inspection to validate experimental practicality, particularly

with regard to refractory precursors. This challenge can be mitigated by the future inclusion

of data or models relevant to solid-state reaction kinetics (e.g., defect formation energies)

and the prediction of physical properties (e.g., melting points, hardness).42 The unorthodox

nature of the unprocessed reactions is an advantage of our approach, however, and permits

synthesis recommendations that expand beyond traditional chemical intuition.

We selected nine reactions from Figure 5 to test experimentally. The calculated ther-

modynamic metrics for these reactions are provided in Table 4. We intentionally selected

reactions spanning various precursor chemistries, free energies, and competition scores. To

prioritize the study of impurity-forming reactions and avoid the aforementioned practicality

challenges, we did not explicitly include any reactions on the Pareto front. The conventional

synthesis route, BaCO3+TiO2 −−→ BaTiO3+CO2, was chosen as a baseline reference (Expt.

1). A positive energy is calculated for this reaction (∆Grxn=+0.042 eV/atom at T = 600 ℃);

however, this is likely due to residual uncorrected error in the calculated energy of BaCO3,

which is not included in the NIST-JANAF dataset. We did not test the analogous reac-

tion with BaO precursor due to its hygroscopic nature, which makes it difficult to handle.

However, we did test the alternative reaction from barium peroxide, BaO2 (Expt. 2). We

included two reactions that form BaTiO3 directly from at least one other ternary phase (Ex-

pts. 3, 4). A reaction with a Ti metal precursor was selected due to its extremely high C2

score (Expt. 5). Two metathesis reactions (Expts. 6, 7) were selected due to their predicted

high performance, including the unconventional use of a sulfide precursor (BaS). The final

two reactions (Expts. 8, 9) were selected for being endergonic (∆Grxn > 0) to validate the

accuracy of our free energy predictions. We note that several experiments feature precursors

that are not easily purchasable from a chemical supplier (e.g., Ba2TiO4, Na2TiO3); these

phases were synthesized following recipes reported in the literature (see Methods).
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Table 4: Selected experimental BaTiO3 synthesis reactions and their associated Gibbs free
energies, ∆Grxn (T = 600 ℃), primary competition scores, C1, secondary competition scores,
C2, and costs, Γ.

Reaction ∆Grxn C1 C2 Γ
Expt. (eV/at) (eV/at) (eV/at) (eV/at)

1 BaCO3 + TiO2 −→ BaTiO3 + CO2 0.042 0.043 0.000 0.024
2 BaO2 + TiO2 −→ BaTiO3 + 0.5 O2 -0.180 0.021 0.119 0.045
3 Ba2TiO4 + TiO2 −→ 2 BaTiO3 -0.036 0.030 0.043 0.029
4 Ba2TiO4 + BaTi2O5 −→ 3 BaTiO3 -0.001 -0.001 0.000 -0.001
5 Ba(OH)2·H2O + 3.666 Ti −→ BaTiO3 + 1.333 Ti2H3 -0.530 0.070 0.534 0.219
6 BaCl2 + Na2TiO3 −→ BaTiO3 + 2 NaCl -0.075 -0.007 0.040 0.007
7 BaS + Na2TiO3 −→ BaTiO3 + Na2S -0.048 -0.001 0.041 0.013
8 2 BaS + 3 TiO2 −→ 2 BaTiO3 + TiS2 0.090 0.090 0.000 0.050
9 BaSO4 + 2 TiO2 −→ BaTiO3 + TiOSO4 0.178 0.178 0.000 0.098

The nine synthesis experiments were completed using a gradient furnace (see Methods),43

allowing the observation of reaction products over a wide range of temperatures (∼200-

1000 ℃) with ex post facto SPXRD. The experimental results are summarized in Figure 6.

Mole fractions of each phase were determined via Rietveld refinement of SPXRD patterns

acquired at various positions (temperatures) along the length of the sample after heating and

subsequent cooling to ambient temperature. The ex post facto phase fraction plots can be

interpreted similarly to those constructed with in situ data, as each effectively illustrates the

reaction pathway during heating. More rigorously, however, each point in Figure 6 is pseudo-

independent and best interpreted as the result of an isothermal (ex situ) reaction at its

associated temperature. Shorter reaction times were selected to ensure capture of the onset

of short-lived intermediate phases critical to assessing reaction pathway selectivities (Table

S2). Selected Rietveld analysis results for each experiment are provided in the Supporting

Information (Figures S4-S12).

The observed reaction pathways demonstrate significant variation in target and impu-

rity formation. Visualizing the interface reaction hulls of the selected experiments helps to

rationalize their predicted and observed performance (Figure S13). The most complex of

these pathways is that of Expt. 5, which features the formation of BaTiO3 at an interme-

diate temperature range (400-500 ℃) before impurities Ba2TiO4, TiH2, and TiO2 begin to
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Figure 6: Reaction pathways for selected BaTiO3 synthesis experiments. (a-
i) Mole fractions of observed phases for Experiments 1-9, as determined through Rietveld
refinements of ex post facto SPXRD data. Phase types are distinguished by shape: pre-
cursors (circles), targets (diamonds), byproducts (triangles), and impurities (exes). Back-
ground shading denotes the total mole fractions of precursor (gray), impurity (pink), and
target/byproduct (green). The median total reaction time was ∼67 min; exact times for
each experiment are provided in Table S2.

dominate. Indeed, Expt. 5 exhibits both the largest driving force (-0.530 eV/atom) and C2

value (0.534 eV/atom) of any reaction, supporting the observation of a complex reaction

pathway containing many impurity phases.

The conventional synthesis reaction between BaCO3 and TiO2 (Expt. 1) was largely

incomplete after 60 min at 1000 ℃ and exhibited significant formation of BaTi2O5. The

interface reaction hull for this system (Figure S13a) suggests that the formation of BaTi2O5

is the most favorable reaction outcome, supporting our observations. In Expt. 2, the reaction
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of TiO2 with BaO2 appears to significantly decrease the reaction onset temperature but also

features substantial impurity formation. In three of the experiments (Expts. 4, 6, and 7),

the BaTiO3 synthesis reaction is the most favorable reaction on the hull, resulting in C1 < 0.

Notably, the use of ternary precursor(s) in Expts. 3 and 4 (Ba2TiO4, BaTi2O5) results in low

(or zero) C2, but also very little driving force. As a result, we observe near-perfect selectivity

(i.e., very few visible impurities) at the expense of slowing down the reactions substantially.

When the reaction energy is above zero, impurities associated with exergonic competing

reactions may still form. For example, the hull for Expt. 8 indicates a significant degree of

competition, including several reactions with only slightly positive energies (∆Grxn < 0.01

eV/atom). Experiments 8 and 9 are indeed largely unreacted as predicted but feature minor

impurities (BaSO4 and/or BaO).

The metathesis reactions (Expts. 6, 7) show the overall greatest performance, yield-

ing primarily BaTiO3 and the predicted byproducts at moderately low temperatures (600-

700 ℃). While metathesis reactions producing alkali halides are well-known for their op-

timal performance,44 it is a notable and surprising result that the sulfide-based reaction

(BaS + Na2TiO3 −−→ BaTiO3 + Na2S) achieves such pure and direct synthesis of BaTiO3,

as predicted. Its success further highlights the importance of considering more complex

chemistries involving additional elements besides those in the target phase (i.e., hyperdi-

mensional chemistries).40 Some impurity formation, however, is evident in both metathesis

reactions, particularly at lower temperatures. BaTi2O5 forms in both experiments and small

amounts of Ba2TiO4 form in Expt. 7. However, this observation is supported by the calcu-

lated C1 and C2 scores, which indicate that neither reaction should be perfectly selective.

Unexpectedly, the dominant impurities in Expt. 6 are carbonate compounds: Ba3(CO3)Cl4

and BaCO3. We presume this results from the reaction of the original precursors with CO2

in the air. For completeness, we have accounted for these in our experimental analysis even

though they were not explicitly considered in the selectivity calculations. However, we did

exclude from consideration any Si-containing impurities such as Ba2TiSi2O8, which formed

29



in small amounts due to reaction with the quartz capillaries; these Si impurities were minor

(<0.02 mole fraction) and did not significantly affect our analysis.

To quantitatively assess the performance of our predictions in determining the outcomes

of experimental reactions, we propose three reaction outcome metrics summarizing the be-

havior of a reaction pathway: the minimum precursor remaining (P ), the maximum tar-

get/byproduct formed (T ), and the maximum impurity formed (I). Each metric is a mole

fraction value taken from any data point (i.e., temperature) within the reaction pathway.

This permits the capture of key features of the pathway independent of the kinetics of that

reaction and is necessary given the range of chemistries explored. Our outcome metrics are

visualized on the Precursor-Target-Impurity (PTI) plots in Figure 7a. The first quantity, P

(minimum precursor remaining), gives insight into the reactivity and kinetics of the reaction:

high values indicate reactions that did not complete at any temperature within the reaction

timeframe. The second quantity, T (maximum target/byproduct formed), provides a mea-

sure of the success of the reaction in producing BaTiO3 and predicted byproduct(s). Finally,

the third quantity, I (maximum impurity formed), measures the selectivity of the reaction

pathway, indicating the maximum fraction of intermediate/impurity phases synthesized at

any temperature. Note that the temperature-independent PTI metrics are not required to

sum to one for a particular experiment. This is intentional and advantageous because it per-

mits the capture of poor selectivity in even nominally well-performing reactions; i.e., both

T and I can be high (∼1) within the same experiment.

Figures 7b-d show selected correlations between reaction outcomes (P , T , and I) and

the calculated reaction metrics (∆Grxn, C1, and C2). The full set of all (3x3) pairwise

correlation plots is available in Figure S14. We observe that the calculated reaction energy

(∆Grxn) correlates most strongly with the minimum amount of precursor remaining (P )

at the conclusion of the experiment (Figure 7b). With infinite reaction times, we would

theoretically expect this distribution to resemble a step function: P = 0 for reactions with

∆Grxn < 0, and P = 1 for those with ∆Grxn > 0. In our work, the distribution is less
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Figure 7: Summary of experimental results and correlations with calculated
reaction metrics. (a) Precursor-Target-Impurity (PTI) plots, where the height of each
bar indicates the relevant mole fraction captured at the most representative position (i.e.,
temperature) along the length of the sample after heating (and cooling). The different color
bars correspond to the minimum amount of precursor remaining (P , gray), the maximum
amount of target/byproducts formed (T , green), and the maximum amount of impurity
formed (I, pink). (b) Positive correlation between P and the Gibbs free energy of the
reaction, ∆Grxn. (c) Negative correlation between T and C1. (d) Positive correlation between
I and C2. The T and I mole fractions have been normalized by the maximum amount of
precursor consumed in the experiment, 1− P , for enhanced visualization of the trend. The
small impurity amounts detected in Expts. 8 and 9 are treated as yielding I = 0 to more
accurately reflect the lack of observed reaction.

defined, given the shorter reaction times and different chemistries explored. The coordinates

of Expts. 1 and 2 appear to deviate the most from a step-like distribution. Difficulty in

modeling the energetics of carbonate reactions was previously discussed and likely explains

the deviation of Expt. 1. In contrast, the deviation of Expt. 2 is likely kinetic in nature, as

the reaction appears to stall (Figure 6b); this may suggest that the maximum temperature

(750-800 ℃) is too low to achieve sufficient reaction completion.

The primary (C1) and secondary (C2) competition metrics display negative and positive
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correlations with the maximum amounts of target (T ) and impurity (I) phases formed,

respectively (Figures 7c,d). We note that these trends are not strictly obeyed in a monotonic

fashion. Still, the correlations are significant and can be theoretically rationalized by their

derivation from the interface reaction hull. It is reasonable that C1 correlates most strongly

with T , as this competition metric effectively measures the relative favorability of the target

reaction over competing reactions. Similarly, it is sensible that C2 should correlate most

strongly with I given its derivation as a measure of the relative stability of impurity phases

with respect to the target phase. To be precise, the experimental correlation between C2 and

I suggests that one should consider not only the sum of the inverse hull distance energies for

all competing phases but the total energy of the entire secondary reaction sequence containing

them (Equation 2). By definition, this quantity includes, and thus will always be larger than

or equal to, the sum of all competing inverse hull distance values for a particular interface

reaction hull. Regarding the functional form of C2, the question arises as to whether a more

simple summation of the maximum energy secondary reactions in the left and right hull

subsections is a sufficient measure for secondary competition. While the maximum energy

secondary reactions tend to account for much of the value of C2, on average, the full C2

metric is 0.077 eV/atom greater than considering the maximum energy secondary reactions

alone (Figure S15), suggesting that C2 is a more conservative metric. For completeness, we

also tested an alternative formulation of the secondary competition metric using the enclosed

“area” to the hull. While this metric correlates with C2, its calculation is more numerically

unstable, and its units are less interpretable. Hence, we generally recommend the approach

of modeling full secondary reaction sequences, which is straightforward to implement using

our secondary competition algorithm (see Methods).

In a previous study,24 we suggested a solid-state reaction selectivity metric based on the

difference in elemental chemical potentials between precursors and targets, measured by a

distance along the chemical potential diagram (i.e., the “total chemical potential distance”).

This metric was used to rationalize the unique selectivity of the Na-based precursor in synthe-
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sizing pyrochlore Y2Mn2O7 from YOCl and AMnO2 (A=Li, Na, K). While straightforward

to compute using just the chemical potential diagram, the distance metric operates in the

space of chemical potentials rather than reaction energies, rendering it less intuitive and

more difficult to precisely discern the specific competing reactions. From the results here,

we generally recommend that C2 be used instead of total chemical potential distance where

possible. Both selectivity metrics capture similar characteristics of the competing phase

space: each effectively involves the summation of competing phase stabilities through in-

verse hull distances or the corresponding chemical potential stability ranges. More precisely,

both quantities are correlated (Figure S16) because chemical potentials are mathematical

derivatives of the convex hull in energy-composition space. However, the total chemical

potential distance is biased, particularly by competing phases with defective elemental-like

compositions (e.g., Mg149Cl). Due to the increased weight of the entropic (−TS) term in the

definition of Gibbs free energy, chemical potential diagrams featuring these compositions as

competing phases may yield very high (unfavorable) total chemical potential distance values

for synthesis reactions.

We acknowledge that while C1 and C2 are meant to capture different, independent mech-

anisms by which competing phases form, these metrics are at least partially correlated due

to the geometric constraints of the convex hull. In particular, one situation is geometrically

limited from occurring: high C2 and low C1 (Figure S17). Stated explicitly: if a competing

phase lies significantly below the tie-line formed by the target and a precursor (i.e., high C2),

then both the target and that competing phase necessarily have similar reaction energies to

form from the precursors, leading to high C1. In general, however, this restriction does not

make the metrics redundant; while there is some correlation between the two, the correlation

is not particularly strong (Figure S16). Therefore, we generally recommend the tandem use

of both selectivity metrics.

The major limitation of our current synthesis planning workflow is the assumption that

optimal synthesis reactions can be predicted with the thermodynamic energy landscape
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alone. While this is not the case for all chemistries, we show here that at least for chemical

systems that exhibit practical solid-state reaction kinetics, the energy landscape alone can

provide much of the rationalization for the observation of impurity phases. To say that im-

purity and secondary phases are inherently “kinetic” products is a misnomer. Rather, these

phases may be the thermodynamic minima of smaller “local” interface systems, distinct

from the thermodynamic products of the entire reaction mixture (the global thermodynamic

solution). Furthermore, these impurities are often not easily convertible to final products

without long-range mass transport or intervention (e.g., via re-grinding or subsequent heat-

ing). This explains why impurities are often pervasive and challenging to remove in chemical

systems with lower driving forces and/or slower kinetics (e.g., BiFeO3).

Currently, our synthesis planning workflow focuses exclusively on optimizing product

purity; however, there are many issues one must consider when designing a synthesis recipe

for a target compound: material cost, safety concerns, stability in air, handling challenges,

availability of precursors, etc. Many routes suggested by our workflow involve the formation

of byproducts that are not easily removable from the product mixture (e.g., the formation

of BaTiO3 with byproduct Ba2TiO4). To this point, one should be thoughtful in designing

criteria by which to filter recommended synthetic routes. For example, one can prioritize

the formation of only gaseous byproducts (e.g., O2 or CO2) or those easily removable by a

solvent (e.g., NaCl). The cost function used to rank reactions can be modified to include

other reaction metrics of interest, such as the estimated economic cost of the precursor

materials. While not explicitly demonstrated here, the synthesis planning workflow can

also be extended to use for multi-step syntheses, allowing one to retrosynthetically sequence

reactions to a target material beginning with purchasable, “off-the-shelf” precursors.
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Conclusions

Using the interface reaction model for powder reactions, we proposed two thermodynamic

selectivity metrics for solid-state reactions: primary (C1) and secondary (C2) competition.

To systematically and critically examine the effectiveness of our metrics, we analyzed ex-

isting successful synthesis routes available in the literature and, leveraging a massive set of

82,985 synthesis reactions extracted from an 18-element reaction network constructed from

Materials Project data, designed and executed nine BaTiO3 synthesis experiments with a

range of selectivity values as compared to conventional precursors (BaCO3 and TiO2). Anal-

ysis of reaction pathways in the nine experiments via ex post facto synchrotron powder

X-ray diffraction reveals that C1 and C2 correlate with the maximum amounts of target and

impurity formed, respectively.

The main advantage of our approach compared to recent, existing approaches14,25 is

the ability to simultaneously consider a wide range of chemistries, including those with

unconventional additional elements. These so-called hyperdimensional chemistries40 allow

one to bypass commonly encountered intermediates in target systems with many competing

phases. This was demonstrated particularly for the BaTiO3 system studied in this work

and is relevant for many other materials in the literature that are conventionally synthesized

with theoretically suboptimal precursors (e.g., Na2Ti3O7, NaTaO3, LiMn2O4, etc.).

We anticipate that the selectivity metrics presented here and our computational synthesis

planning workflow will significantly reduce the synthesis bottleneck, providing more rapid

development of synthesis approaches for new, predicted materials. Our workflow provides

a theoretical rationale for using certain precursors and synthesis conditions over other op-

tions, which promises to optimize existing synthesis procedures for current technologically

important materials.

We envision our approach to be particularly useful in aiding high-throughput automated

laboratory exploration efforts.45 Predictions can be used to design and downselect the syn-

thesis reactions tested, reducing the cost and current trial-and-error approach to inorganic
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materials synthesis. The future inclusion of models for the kinetic behavior of reactions,

such as estimates of the reactivity of precursors based on solid-state diffusivities, will further

enhance predictions.

Methods

Thermodynamic Data

Gibbs free energies of formation, ∆Gf(T ), were acquired or approximated in a similar ap-

proach to those of previous works.24,26 We acquired experimental ∆Gf(T ) values from the

NIST-JANAF thermochemical tables29 where available. Experimental values were limited

to compounds with low melting points (i.e., Tm ≤ 1500 ℃), as these systems demonstrate

more complex phase change behavior over the temperature range studied here. For predom-

inantly solid compounds (i.e., those with melting points above this threshold), as well as

for all other phases not available in the NIST-JANAF thermochemical tables, we estimated

∆Gf(T ) using the machine-learned Gibbs free energy descriptor identified by Bartel et al.28

This descriptor was applied using formation enthalpies ∆Hf(T = 298 K) acquired from the

Materials Project (MP) database,27 version 2022.10.28.

Due to the well-known and systematic formation energy error of carbonate compounds

calculated with GGA exchange-correlation functionals,14,19 we applied an energy correction

of 0.830 eV per CO 2–
3 anion to all carbonate compounds acquired from MP. This value was

determined by fitting the mean error between computed and experimental ∆Gf(T = 300 K)

values for 15 metal carbonate compounds (Figure S18).

Synthesis Planning Workflow

The synthesis reaction calculation and ranking procedure was implemented as a Python-

based workflow in the existing reaction-network package.26 The code is available on GitHub

at https://github.com/materialsproject/reaction-network. The workflow was con-
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structed and launched on computing resources using the jobflow 46 and fireworks 47 workflow

packages.

The synthesis planning workflow consists of three sequential steps. First, phases and their

formation energies for the chemical system of interest are acquired as previously described.

The total number of phases can be optionally reduced by setting a threshold for the maximum

energy above hull (∆Ghull). In this work, we used a moderately large threshold of ∆Ghull ≤ 50

meV/atom, evaluated at ambient temperature (T = 300 K). Second, reaction enumeration

is performed for the acquired phases using the combinatorial and free energy minimization

approaches described in our previous work on solid-state reaction networks.26 Note that the

combinatorial approach allows one to identify reaction product combinations above the hull

(i.e., “metastable” products), which makes the analysis more robust to numerical error in

the thermodynamic data. For systems with an open element (e.g., O2 gas), this reaction

enumeration step is performed again using grand potential energies, where the open element

has been assigned a user-defined value for the chemical potential (often the standard state,

µ = µ0 eV). Finally, C1 and C2 scores are calculated for all target synthesis reactions (i.e.,

those that form the desired target composition). To do this, the relevant competing reactions

are extracted from the full set of enumerated reactions. We define a competing reaction as one

whose precursors are a subset of the target reaction’s precursors. These competing reactions

are then used to compute the interface reaction hull, from which C1 and C2 are calculated

via Equations 1 and 4. For open systems, this selectivity calculation procedure is performed

again, including any additional enumerated open reactions and ensuring that all reactions

are calculated with grand potential energies at the corresponding chemical potential.

Secondary Competition Algorithm

The secondary competition score, C2, is defined as the negative sum of the mean secondary

reaction sequence energies to the left and right of the target on the interface reaction hull

(Equation 4). One approach for acquiring these quantities involves using a recursive algo-
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rithm to identify all possible sequences and their energies. However, this strategy is too slow

for the high-throughput calculation of C2 in systems with many competing reactions.

Instead, we have identified a non-recursive algorithm that takes advantage of the con-

nection between this problem and the recursive construction of binary trees via the use of

the Catalan number sequence. Our algorithm reformulates the sum of all secondary reac-

tion sequence energies as a sum of individual secondary reaction energies weighted by their

multiplicities, i.e., the total number of appearances of a particular reaction within the set

of all possible secondary reaction sequences. The energy of any reaction indexed k can be

calculated geometrically as the altitude, hk, of the triangle formed by its product vertex and

two reactant vertices on the interface reaction hull. We find that the altitude multiplicity,

mhk
, is determined to be the product of three Catalan numbers, un, such that

mhk
= unl

· unr · u(n−nl−nr−1), (6)

where nl and nr refer to the number of interior vertices (i.e., within the triangle) to the

left and right of the vertex of interest, respectively, and n is the total number of interior

vertices for the entire hull subsection. For example, for secondary reactions between nearest

neighbors, nl = 0 and nr = 0, resulting in an altitude multiplicity of mh = un−1.

The mean secondary reaction sequence energy for the hull subsection can then be calcu-

lated as

∆G2 =
1

N

V∑

k

mhk
· hk, (7)

where the sum occurs over all of the V unique reaction energies (altitudes), which is the

number of unique triangles that can be constructed for the hull subsection, including the

two exterior vertices: V =
(
n+2
3

)
. The total number of unique secondary reaction sequences

equals the corresponding Catalan number, N = un. Finally, once this process has been

performed for both the left and right hull subsections, the secondary competition (C2) can

be calculated via Equation 4.
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Literature Reactions

Solid-state literature reactions studied in this work were acquired from the text-mined dataset

of 31,782 inorganic materials synthesis recipes originally extracted from the literature by

Kononova et al.33 and available at https://github.com/CederGroupHub/text-mined-s

ynthesis_public (version 2020-07-13). The original dataset was filtered down to 8,530

reactions that contain: 1) precursors composed of ≤ 2 solids and ≤ 1 elemental gases (i.e.,

O2, H2, and N2), 2) no elements with an atomic number greater than 94 or for which the

Gibbs free energy descriptor does not apply (e.g., Ne, Ar, Pm, Ra), 3) ten or fewer total

elements due to limitations in the convex hull algorithm, and 4) no ions. Finally, these

reactions were required to be stoichiometrically balanceable after adjusting compositions for

hydrates and fractional formulas. For reactions containing variable compositions with one

open variable (e.g., Nd1-xSrxCoO3), we attempted to substitute all extracted values of x and

retained the reactions that could be successfully balanced.

Competition metrics and free energies were assessed for each of the remaining reactions.

For the enumerated competing reactions, metastable phases were considered up to a max-

imum threshold of ∆Ghull = 50 meV/atom, evaluated at ambient temperature (T = 300

K). Interface reaction hulls were constructed at the maximum temperature reported during

synthesis, Tsyn. If this was not provided, a temperature of 800 ℃ was assumed. Formation

energies, ∆Gf(Tsyn), were assigned based on the ground-state energy for a given composition;

i.e., we selected the lowest available formation energy of all polymorphs with the composition

of interest. For increased accuracy, we did not include a reaction if any of its entries were

missing from our thermodynamic data. For reactions with an open gas (i.e., O2, H2, N2), we

assigned a chemical potential of µgas = 0 eV (i.e., standard state at Tsyn) for that element.

For reactions completed in air, we assumed an O2 partial pressure of 0.21 atm and thus

assigned a chemical potential of µO = 1
2
kbTsyn ln(0.21) eV. Finally, we removed duplicates

with the same reaction equation and temperature/environment, as well as identity reactions

(e.g., A → A), These filtering steps yielded a total of 3,520 unique literature reactions.
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Precursor Materials

Precursors for all experiments were purchased from chemical providers or produced via known

solid-state synthesis approaches, as necessary. Precursors acquired from chemical providers

include: barium carbonate (BaCO3, J.T.Baker 99.9%), titanium(IV) oxide (anatase TiO2,

Acros Organics 99.9%), barium sulfate (BaSO4, J.T.Baker 99.9%), barium hydroxide hydrate

(Ba(OH)2 · 8H2O, Mathsen Colman & Bell 98%), barium chloride hydrate (BaCl2 · 2H2O,

Fisher Scientific 99.9%), activated carbon (C, J.T.Baker 99.9%), and titanium metal (Ti,

annealed foil, Alfa Aesar 99.7%).

Ba2TiO4 was synthesized based on an existing approach48 using stoichiometric amounts

of BaCO3 and anatase TiO2. The chemicals were mixed, ground using a mortar and pestle,

placed in an alumina boat inside of a mullite process tube with self-sealing endcaps, and then

heated at 950 ℃ for 16 hrs under Ar flow with a heating rate of 10 ℃/min. The powder was

then reground and reheated at 1100 ℃ for another 16 hrs at a heating rate of 10 ℃/min.

Handling operations were completed in an Ar glovebox due to the hygroscopic nature of

Ba2TiO4.

BaTi2O5 was synthesized with stoichiometric amounts of BaCO3 and anatase TiO2. The

chemicals were mixed, ground using a mortar and pestle, and heated in an alumina boat at

900 ℃ for 5 hrs as a pre-treatment step. The powder was then reground and reheated at

1220-1225 ℃ for 24 hrs with heating and cooling steps of 3 hrs.49

Barium sulfide (BaS) was synthesized following an existing approach50 using BaSO4 and

activated carbon. The chemicals were mixed, ground using a mortar and pestle, pressed into

a 0.5” diameter pellet with two tons of force, and heated in an alumina boat at 1100 ℃ for

7-10 min in air, with a heating rate of 10 ℃/min and natural cooling in the furnace.

Sodium metatitanate (Na2TiO3) was synthesized based on an existing approach51 using

stoichiometric amounts of sodium hydroxide (NaOH, Fisher Scientific 99.9%) and anatase

TiO2, with a slight excess of NaOH. The chemicals were mixed, ground using a mortar and

pestle, and heated in an alumina boat at 500 ℃ for 2 hrs with a heating rate of 10 ℃/min.
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Ex Post Facto SPXRD Reactions

Synchrotron powder X-ray diffraction (SPXRD) data were collected in transmission (i.e.,

Debye-Scherrer) geometry on beamline 28-ID-2 (XPD) at the National Synchrotron Light

Source-II (NSLS-II). Data were collected on a 2D area detector (PerkinElmer XRD 1621,

2048x2048 pixel array, 200x200 µm pixel size) at a sample-to-detector distance of 1407.1 mm

using an incident X-ray energy of 68.12 keV (λ = 0.182 Å) with a 0.60 x 0.20 mm beam size.

A total acquisition time of 1 s was used, summing five subframes collected for 0.2 s each.

Samples were packed into 1.1 mm OD/0.9 mm ID quartz capillaries. The capillary ends

were filled with a 3 mm plug of powder silicon (Si, Strem 99.0%) followed by a cap of recycled

silicon dioxide (SiO2). To account for possible gas production, the capillaries for Expts. 1,

2, 5, 7, and 8 were left unsealed, and a moderate vacuum (Pgage = −20 in Hg) was pulled

on the samples during heating. All other sample capillaries (Expts. 3, 4, 6, and 9) were

flame-sealed under argon.

Experiments were carried out in the gradient furnace described in Ref. 43, which heats

samples to different temperatures across a range of spatial positions on the capillary (Figure

S19). The furnace was operated with a Eurotherm 2408 temperature controller and a TDK

Lambda 900W (30V/30A) power supply. Furnace heating elements were wound from resistive

wire (Kanthal A-1, #24 awg). A K-type thermocouple (stainless steel, 0.01” OD) placed

at an intermediate position along the sample was used as input for PID control of the

furnace. We performed experiments in three temperature ranges with setpoints of TH = 550

℃ (Expts. 1, 3, 4, 8), TL1 = 450 ℃ (Expts. 2, 5, 6, 9), and TL2 = 400 ℃ (Expt. 7). This

choice was motivated by differences in reactivity among the samples. Position-dependent

temperatures were determined using a fit of measured in situ lattice expansion from NaCl/Si

and Al2O3/MgO standards (Figure S20). Using the root-mean-square error of the curve fit,

the estimated uncertainty for each temperature point is 11.4 ℃ (TH), 7.9 ℃ (TL1), and 10.9

℃ (TL2). The experiments spanned a total temperature range of 189-1064 ℃.

The median total time of each experiment was ∼67 min. Heating, holding, and cooling
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times varied among experiments due to differences in sample heat capacities, reactivities,

and the sizes of investigated temperature windows; specifically, unreactive samples (Expts.

8, 9) and samples with smaller studied temperature windows (Expts. 3, 4) were held at

elevated temperatures for shorter times. These differences are accounted for in our analysis

via the use of relative metrics (i.e., mole fraction) and normalization by reaction progress.

The exact heating, holding, and cooling times for each sample are shown in Table S2.

Quantitative Phase Analysis of Powder Diffraction Data

Quantitative analysis of synchrotron powder X-ray powder diffraction data was carried out

with the Rietveld method using either the TOPAS v6 (Expts. 1-3, 5, 7-9) or GSAS-II (Ex-

pts. 4, 6) software packages.52,53 Atomic displacement parameters were fixed to B = 1 Å2,

and peak broadening was primarily modeled via crystal size broadening using a Lorentzian

function. Site occupancies were fixed at one.

Supporting Information

• Description of cost function power transformation; interface reaction hull for BaO|TiO2;

open-O2 reaction data for BaTiO3; selected Rietveld refinements from all experiments;

interface reaction hull plots for selected experimental reactions; selectivity metric cor-

relations; details of carbonate correction; description of gradient furnace setup and

temperature calibration; table of experimental reaction times and temperature set-

points (PDF)

• Table of 3,520 reactions extracted from the literature with their calculated performance

metrics and DOIs (XLSX)

• Table of 82,985 predicted/ranked closed BaTiO3 synthesis reactions (XLSX)

• Table of 62,133 predicted/ranked open-O2 BaTiO3 synthesis reactions (XLSX)
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• Table of 133 Pareto optimal open-O2 BaTiO3 synthesis reactions (XLSX)
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Power transform of costs in literature reactions

Figure S1: Power transformation applied to literature reaction costs, Γ. The
power transform monotonically transforms the reaction costs for closed and open reactions
such that they resemble standard normal distributions, allowing for better comparison be-
tween the two datasets.
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BaO|TiO2 interface reaction hull

Figure S2: Calculated interface reaction hull for BaO|TiO2 at T = 600 ℃. Blue
squares denote experimentally known ternary phases in the system. Ba2TiO4 is the most
commonly observed intermediate/impurity in standard syntheses of BaTiO3 from BaO (or
BaCO3) and TiO2; it is also predicted to be the phase with the greatest driving force to
form.
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BaTiO3 synthesis reactions: open O2

Table S1: Selected experimental reactions to BaTiO3 and their associated grand potential
energies (µO = −0.1001 eV), ∆Φrxn (T = 600 ℃), primary competition scores, C1, secondary
competition scores, C2, and costs, Γ.

Reaction ∆Φrxn C1 C2 Γ
Expt. (eV/at) (eV/at) (eV/at) (eV/at)

1 BaCO3 + TiO2 −→ BaTiO3 + CO2 0.112 0.114 0.001 0.063
2 BaO2 + TiO2 −→ BaTiO3 + 0.5 O2 -0.590 0.078 0.389 0.151
3 Ba2TiO4 + TiO2 −→ 2 BaTiO3 -0.089 0.085 0.114 0.081
4 Ba2TiO4 + BaTi2O5 −→ 3 BaTiO3 -0.002 -0.002 0.000 -0.001
5 Ba(OH)2·H2O + 3.666 Ti −→ BaTiO3 + 1.333 Ti2H3 -0.713 8.188 8.973 7.651
6 BaCl2 + Na2TiO3 −→ BaTiO3 + 2 NaCl -0.112 -0.004 0.077 0.021
7 BaS + Na2TiO3 −→ BaTiO3 + Na2S -0.077 4.032 4.174 3.685
8 2 BaS + 3 TiO2 −→ 2 BaTiO3 + TiS2 0.168 4.276 4.109 3.790
9 BaSO4 + 2 TiO2 −→ BaTiO3 + TiOSO4 0.533 0.533 -0.000 0.293
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Figure S3: Synthesis map of 62,133 calculated open-O2 synthesis reactions pro-
ducing BaTiO3. Reaction energies and competition scores are calculated assuming a tem-
perature of T = 600 ℃ and oxygen chemical potential µO = −0.1001 eV, as approximated
by selected experimental conditions (vacuum at Pgage = −20 in Hg). As in Figure 5, re-
actions are plotted on a shared axis of reaction energy, ∆Φrxn, and on independent axes of
(a) primary competition, C1, and (b) secondary competition, C2. Orange squares represent
reactions on the three-dimensional Pareto frontier of ∆Φrxn, C1, and C2. Blue diamonds
indicate selected reactions experimentally tested in this work.
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Selected Rietveld refinements for BaTiO3 experiments

Figure S4: Selected Rietveld refinement for Experiment 1. The observed pattern
represents ex post facto synchrotron powder X-ray diffraction data (SPXRD) captured fol-
lowing reaction at T = 1040 ℃, which corresponds to the temperature with the highest
BaTiO3 yield. Phase fractions are shown in units of mole percent.

S-6



Figure S5: Selected Rietveld refinement for Experiment 2. The observed pattern
represents ex post facto SPXRD data captured following reaction at T = 762 ℃, which
corresponds to the temperature with the highest BaTiO3 yield. Phase fractions are shown
in units of mole percent.
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Figure S6: Selected Rietveld refinement for Experiment 3. The observed pattern
represents ex post facto SPXRD data captured following reaction at T = 1045 ℃, which
corresponds to the temperature with the highest BaTiO3 yield. Phase fractions are shown
in units of mole percent.
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Figure S7: Selected Rietveld refinement for Experiment 4. The observed pattern
represents ex post facto SPXRD data captured following reaction at T = 1025 ℃, which
corresponds to the temperature with the highest BaTiO3 yield. Phase fractions are shown
in units of mole percent.
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Figure S8: Selected Rietveld refinement for Experiment 5. The observed pattern
represents ex post facto SPXRD data captured following reaction at T = 474 ℃, which
corresponds to the temperature with the highest BaTiO3 yield. Phase fractions are shown
in units of mole percent.
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Figure S9: Selected Rietveld refinement for Experiment 6. The observed pattern
represents ex post facto SPXRD data captured following reaction at T = 625 ℃, which
corresponds to the temperature with the highest BaTiO3 yield. Phase fractions are shown
in units of mole percent.
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Figure S10: Selected Rietveld refinement for Experiment 7. The observed pattern
represents ex post facto SPXRD data captured following reaction at T = 727 ℃, which
corresponds to the temperature with the highest BaTiO3 yield. Phase fractions are shown
in units of mole percent.
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Figure S11: Selected Rietveld refinement for Experiment 8. The observed pattern
represents ex post facto SPXRD data captured following reaction at T = 603 ℃. This
value corresponds to the median temperature studied since BaTiO3 was not observed at any
temperature. Phase fractions are shown in units of mole percent.
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Figure S12: Selected Rietveld refinement for Experiment 9. The observed pattern
represents ex post facto SPXRD data captured following reaction at T = 594 ℃. This
value corresponds to the median temperature studied since BaTiO3 was not observed at any
temperature. Phase fractions are shown in units of mole percent.
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Interface reaction hulls for selected BaTiO3 experiments

Figure S13: Interface reaction hulls for selected BaTiO3 experiments. (a-i) Hulls
for Experiments 1-9, as extracted from the full reaction network calculated during the syn-
thesis planning workflow. Red diamonds mark the selected reactions of interest. All hulls
are plotted on a uniform energy scale to facilitate comparison.
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All pairwise correlation plots between reaction metrics

and experimental outcomes

Figure S14: Pairwise correlation plots between reaction metrics and experi-
mental outcomes. Plots of minimum remaining precursor (P ), maximum target (T ), and
maximum impurity (I) formed as a function of reaction energy, primary competition, and
secondary competition. The target and impurity plots have been normalized by the amount
of precursor consumed (1− P ).
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Correlations between selectivity metrics

Figure S15: Pairwise correlations of alternative secondary competition metrics.
Secondary competition (max) is defined as the sum of the energies of only the secondary
reactions with the highest driving forces on either side of the target. Secondary competition
(area) is the enclosed area of the interface reaction hull.
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Figure S16: Pairwise correlations of selectivity metrics. The total chemical potential
distance is calculated using the methodology outlined in Ref. S1.
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Figure S17: Examples of varying C1 and C2 indicating their partial correlation.
(a, b) When secondary competition (C2) is low, primary competition (C1) can either be low
or high. c) However, when C1 is low, C2 can not be high due to the geometric constraints of
the hull. d) There are no restrictions for both C1 and C2 to be high.
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Formation energy correction for carbonates

Figure S18: Fitting procedure for formation energy correction of carbonate com-
pounds. (a) Carbonates exhibit a systematic negative shift in predicted Gibbs free energy
of formation, ∆Gf (T =300 K) compared to the experimental values. (b) Energies of the
same carbonate compounds after applying a fit energy correction of 0.830 eV/CO2−

3 .
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Gradient furnace setup, heating, and calibration

Figure S19: The gradient furnace used in all ex post facto SPXRD experiments.
The pictured device has the same specifications as described in Ref. S2. The heating wires
are wound with variable pitch, resulting in a wide temperature profile over the powder sample
(capillary tube). A thermocouple is used as a setpoint for determining the power supplied
to the heating elements.

Table S2: Reaction times for selected BaTiO3 experiments. All times are shown in MM:SS
format (minutes/seconds). Temperatures correspond to gradient furnace setpoints of TH =
550 ℃, TL1 = 450 ℃, and TL2 = 400 ℃.

Precursors Heat Hold Cool Total Temp.
Expt.

1 BaCO3-TiO2 09:08 43:28 14:05 66:41 TH

2 BaO2-TiO2 01:47 64:38 13:00 79:25 TL1

3 Ba2TiO4-TiO2 06:44 18:22 11:48 36:54 TH

4 Ba2TiO4-BaTi2O5 12:07 14:30 12:35 39:12 TH

5 Ba(OH)2·H2O-Ti 07:15 58:30 14:33 80:18 TL1

6 BaCl2-Na2TiO3 01:36 65:04 22:43 89:23 TL2

7 BaS-Na2TiO3 02:14 61:26 28:16 91:56 TL1

8 BaS-TiO2 09:03 14:24 11:46 35:13 TH

9 BaSO4-TiO2 07:15 25:54 13:46 46:55 TL1
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Figure S20: Measured temperature distributions along the length of sample
capillary. Temperatures were determined by refinement of lattice parameters from NaCl/Si
(TL1, TL2) or Al2O3/MgO standards (TH). The calibration curves correspond to gradient
furnace setpoints of TH = 550 ℃, TL1 = 450 ℃, and TL2 = 400 ℃.
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